Abstract

Aim: The article describes general structure, main characteristics and the software of a new model of the aviation spectra-zone system called “AVIS”. The system was created in The Republic of Belarus. It is characterized by high spatial and spectral resolution and automatic adaptive control system. The article also presents some flight tests results.

Introduction: The aviation high spatial and spectral resolution spectra-zone system “AVIS” with automatic adaptive control is an integral part of the Multilevel aerospace territory monitoring system of the Republic of Belarus, created in the framework of realization of the State Scientific and Technical Programme “Space systems and technologies” of the National Programme for the exploration and using of outer space for peaceful purposes. The calibration methods, measuring techniques of different objects and environments, as well as the software for the system management were developed. The main purpose of “AVIS” consists in the registration of spectra-zone and thermal images of the Earth surface. The “AVIS” system is designed for the operation on the AN-2 plane of the Ministry for Emergency Situations of the Republic of Belarus equipped with a special illuminator. This system is installed on the gyroscopic platform in order to reduce the instability of the plane’s flight. The system consists of the block of optical sensors (BOS), workstation (W) and a set of visual positioning (SoVP). A special complex of programmes with the features of the hardware interface was developed with the purpose of registration and control of the data received by BOS modules. Five modules are included in this software.

Conclusions: The flight tests of an experimental model (EM) “AVIS” on the board of AN-2 of the Vitebsk branch of the SOE “Bellesavia” of the Ministry for Emergency Situations of the Republic of Belarus were successfully conducted in June 2012. The modules and blocks of the “AVIS” system were installed on the board of the aircraft at the airfield. The survey was conducted at the heights of 1000, 700, 600 and 300 m. The aerial survey was conducted as a result of a flight along parallel paths – method called “parallel upwind sailing”, at the height of 1000 m. The flight took 1 hour and 50 minutes. The EM “AVIS” showed resistance to the impacts of mechanical loads during takeoff and landing of AN-2 at the soil airfield. On the basis of processing and analysis of these pictures, trace (linear) and areal mosaics of the examined territory were prepared. What is more, hard copies of spectra-zone and thermal images of the examined area were obtained. The researchers estimated the accuracy of the determination of areas in the visible and IR range.

Relevance in practice: In the context of the activity of the Ministry for Emergency Situations of the Republic of Belarus, the developed system “AVIS” allows: to provide executive construction of the schematic maps of the thermal fields of forest and peat fires in heavy smoke; to determine the scale and leaks from oil and product pipelines; to evaluate their consequences; to construct the schematic maps of the flooded areas and damage from hurricanes; to construct profiles of thermal fields of product pipelines, thermal paths of residential areas and industrial facilities; to evaluate the damage to crops by natural factors (frost, drought, flooding, etc.).

Keywords: aerospace monitoring, spectra-zonal system, emergencies, spectroradiometer, thermal images